Semi-Parametric Inference for the Partial Area Under the ROC Curve

نویسندگان

  • Fangfang Sun
  • FANGFANG SUN
  • Gengsheng Qin
  • Yu-Sheng Hsu
  • Yixin Fang
  • Yuanhui Xiao
چکیده

Diagnostic tests are central in the field of modern medicine. One of the main factors for interpreting a diagnostic test is the discriminatory accuracy. For a continuous-scale diagnostic test, the area under the receiver operating characteristic (ROC) curve, AUC, is a useful onenumber summary index for the diagnostic accuracy of the test. When only a particular region of the ROC curve would be of interest, the partial AUC (pAUC) is a more appropriate index for the diagnostic accuracy. In this thesis, we develop seven confidence intervals for the pAUC under the semi-parametric models for the diseased and non-diseased populations by using the normal approximation, bootstrap and empirical likelihood methods. In addition, we conduct simulation studies to compare the finite sample performance of the proposed confidence intervals for the pAUC. A real example is also used to illustrate the application of the recommended intervals. INDEX WORDS: ROC, AUC, The partial AUC, Diagnostic test, Confidence interval SEMI-PARAMETRIC INFERENCE FOR THE PARTIAL AREA

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regression Analysis for the Partial Area under the Roc Curve

Performance evaluation of any classification method is fundamental to its acceptance in practice. Evaluation should consider the dependence of a classifier’s accuracy on relevant covariates in addition to its overall accuracy. When developing a classifier with a continuous output that allocates units into one of two groups, receiver operating characteristic (ROC) curve analysis is appropriate. ...

متن کامل

Estimation and Comparison of Receiver Operating Characteristic Curves.

The receiver operating characteristic (ROC) curve displays the capacity of a marker or diagnostic test to discriminate between two groups of subjects, cases versus controls. We present a comprehensive suite of Stata commands for performing ROC analysis. Non-parametric, semiparametric and parametric estimators are calculated. Comparisons between curves are based on the area or partial area under...

متن کامل

Receiver operating characteristic (ROC) curve for medical researchers.

Sensitivity and specificity are two components that measure the inherent validity of a diagnostic test for dichotomous outcomes against a gold standard. Receiver operating characteristic (ROC) curve is the plot that depicts the trade-off between the sensitivity and (1-specificity) across a series of cut-off points when the diagnostic test is continuous or on ordinal scale (minimum 5 categories)...

متن کامل

Empirical Likelihood-Based NonParametric Inference for the Difference between Two Partial AUCS

Compare the accuracy of two continuous-scale tests is increasing important when a new test is developed. The traditional approach that compares the entire areas under two Receiver Operating Characteristic (ROC) curves is not sensitive when two ROC curves cross each other. A better approach to compare the accuracy of two diagnostic tests is to compare the areas under two ROC curves (AUCs) in the...

متن کامل

Jackknife Empirical Likelihood Based Confidence Intervals for Partial Areas Under ROC Curves

The partial area under the ROC curve (partial AUC) summarizes the accuracy of a diagnostic or screening test over a relevant region of the ROC curve and represents a useful tool for the evaluation and the comparison of tests. In this paper, we propose a jackknife empirical likelihood method for making inference on partial AUCs. Following the idea in Jing, Yuan, and Zhou (2009), we combine the e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015